Influence of pyrolyzing temperature and time on lithium storage properties of the synthesized SiOx@C nanocomposites
DOI: 458 Downloads 8040 Views
Author(s)
Abstract
Polysiloxane@phenolic resin (Polysiloxane@RF) precursor is firstly synthesized by sol-gel method using resorcinol, formaldehyde and triethoxyethylsilanes as starting materials, and then pyrolyzed at a desired temperature for desired time. The as-prepared SiOx@C samples are characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, elemental analysis (EA), scanning electron microscope (SEM) and high resolution transmission electron microscopy (HRTEM), respectively. The synthesized SiOx@C composites consist of nanorods and nanospheres. The electrochemical measurement shows that the composition, microstructure and lithium storage properties of the synthesized SiOx@C nanocomposites are closely related with pyrolyzing temperature. Among them, the SiOx@C nanocomposite synthesized at 1000 oC for 3 h delivers the best comprehensive electrochemical performance.
Keywords
SiOx@C nanocomposite; lithium-ion batteries; anode; pyrolyzing temperature; electrochemical performance
Cite this paper
Xiaofang Feng, Mingqi Li,
Influence of pyrolyzing temperature and time on lithium storage properties of the synthesized SiOx@C nanocomposites
, SCIREA Journal of Energy.
Volume 1, Issue 1, October 2016 | PP. 1-19.
References
[ 1 ] | B. Yu, Y. Hwa, C. Park and H. Sohn, J. Mater. Chem. A 1, 4820 (2013). |
[ 2 ] | C. H. Doh, C. W. Park, H. M. Shin, D. H. Kim, Y. D. Chung, S. I. Moon, B. S. Jin, H. S. Kim and A. Veluchamy, J. Power Sources 179, 367 (2008). |
[ 3 ] | J. Wang, H. Zhao, J. He, C. Wang and J. Wang, J. Power Sources 196, 4811 (2011). |
[ 4 ] | Q. Si, K. Hanai, T. Ichikawa, M. B. Phillipps, A. Hirano, N. Imanishi, O. Yamamoto and Y. Takeda, J. Power Sources 196, 9774 (2011). |
[ 5 ] | M. Yamada, K. Uchitomi, A. Ueda, K. Matsumoto and T. Ohzuku, J. Power Sources 225, 221 (2013). |
[ 6 ] | A. A. Hubaud, Z. Yang, D. J. Schroeder, F. Dogan, L. Trahey and J. T. Vaughey, J. Power Sources 282, 639 (2015). |
[ 7 ] | H. J. Kim, S. Choi, S. J. Lee, M. W. Seo, J. G. Lee, E. Deniz, Y. J. Lee, E. K. Kim and J. W. Choi, Nano Lett. 16, 282 (2016). |
[ 8 ] | P. Lv, H. Zhao, C. Gao, T. Zhang and X. Liu, Electrochim. Acta 152, 345 (2015). |
[ 9 ] | W. Chang, C. Park, J. Kim, Y. Kim, G. Jeong and H. Sohn, Energ. Environ. Sci. 5, 6895 (2012). |
[ 10 ] | M. Li, Y. Yu, J. Li, B. Chen, X. Wu, Y. Tian and P. Chen, J. Mater. Chem. A 3, 1476 (2015). |
[ 11 ] | K. Meng, H. Guo, Z. Wang, X. Li, M. Su, B. Huang, Q. Hu and W. Peng, Powder Technol. 254, 403 (2014). |
[ 12 ] | P. Lv, H. Zhao, J. Wang, X. Liu, T. Zhang and Q. Xia, J. Power Sources 237, 291 (2013). |
[ 13 ] | D. J. Lee, M. Ryou, J. Lee, B. G. Kim, Y. M. Lee, H. Kim, B. Kong, J. Park and J. W. Choi, Electrochem. Commun. 34, 98 (2013). |
[ 14 ] | Y. Zhou, Z. Tian, R. Fan, S. Zhao, R. Zhou, H. Guo and Z. Wang, Powder Technol. 284, 365 (2015). |
[ 15 ] | M. K. Kim, B. Y. Jang, J. S. Lee, J. S. Kim and S. Nahm, J. Power Sources 244, 115 (2013). |
[ 16 ] | C. Park, W. Choi, Y. Hwa, J. Kim, G. Jeong and H. Sohn, J. Mater. Chem. 20, 4854 (2010). |
[ 17 ] | J. Lee, N. Choi and S. Park, Energ. Environ. Sci. 5, 7878 (2012). |
[ 18 ] | M. Li, Y. Zeng, Y. Ren, C. Zeng, J. Gu, X. Feng and H. He, J. Power Sources 288, 53 (2015). |
[ 19 ] | T. Cetinkaya, M. Uysal, M. O. Guler, H. Akbulut and A. Alp, Powder Technol. 253, 63 (2014). |
[ 20 ] | M. Su, Z. Wang, H. Guo, X. Li, S. Huang, L. Gan and W. Xiao, Powder Technol. 249, 105 (2013). |
[ 21 ] | Y. Ren and M. Li, J. Power Sources 306, 459 (2016). |
[ 22 ] | J. Meng, Y. Cao, Y. Suo, Y. Liu, J. Zhang and X. Zheng, Electrochim. Acta 176, 1001 (2015). |
[ 23 ] | H. Wang, P. Wu, H. Shi, W. Tang, Y. Tang, Y. Zhou, P. She and T. Lu, J. Power Sources 274, 951 (2015). |
[ 24 ] | H. Guo, R. Mao, X. Yang and J. Chen, Electrochim. Acta 74, 271 (2012). |
[ 25 ] | P. Lv, H. Zhao, C. Gao, Z. Du, J. Wang and X. Liu, J. Power Sources 274, 542 (2015). |
[ 26 ] | C. Gao, H. Zhao, P. Lv, C. Wang, J. Wang, T. Zhang and Q. Xia, J. Electrochem. Soc. 161, A2216 (2014). |
[ 27 ] | T. Horikawa, K. Ogawa, K. Mizuno, J. I. Hayashi and K. Muroyama, Carbon 41, 465 (2003). |
[ 28 ] | Y. Zhang, S. Shen and Y. Liu, Polym. Degrad. Stabil. 98, 514 (2013). |
[ 29 ] | L. Yue, W. Zhang, J. Yang and L. Zhang, Electrochim. Acta 125, 206 (2014). |
[ 30 ] | I. A. Rahman, P. Vejayakumaran, C. S. Sipaut, J. Ismail and C. K. Chee, Mater. Chem. Phys. 114, 328 (2009). |
[ 31 ] | X. Li, X. Zang, Z. Li, X. Li, P. Li, P. Sun, X. Lee, R. Zhang, Z. Huang, K. Wang, D. Wu, F. Kang and H. Zhu, Adv. Funct. Mater. 23, 4862 (2013). |
[ 32 ] | M. Li, Y. Yu, J. Li, B. Chen, A. Konarov and P. Chen, J. Power Sources 293, 976 (2015). |
[ 33 ] | H. Takezawa, K. Iwamoto, S. Ito and H. Yoshizawa, J. Power Sources 244, 149 (2013). |
[ 34 ] | X. Sun and S. Dai, J. Power Sources 195, 4266 (2010). |